The behaviour of the furazan-N-methanide analogue of the furoxan system. Ring expansion: new routes to 6H-1,2,5-oxadiazines. A combined experimental and theoretical study

Richard N. Butler,*," Karen M. Daly," John M. McMahon" and Luke A. Burke"

^a Chemistry Department, University College Galway, Ireland

^b Chemistry Department, Rutgers University, Camden, New Jersey, 08102, USA

Desilylation of N-trimethylsilylmethyl- and deprotonation of N-methyl-1,2,5-oxadiazolium (furazan) salts gave ring expansions to 6H-1,2,5-oxadiazines; the results of 6-31G calculations on the expected furazan-N-methanide intermediate are reported.

Despite the long historical interest $^{1-3}$ in the furoxan system, 1, so much so that this system has its own nomenclature¹ arising from early structural ambiguities, the carbon analogue, the furazan-N-methanide 2, is unknown. Our interest in

Scheme 1 Some ¹³C (and ¹H) NMR shift ranges shown. *Reagents:* i, trimethylsilylmethyl trifluoromethanesulfonate; ii, CsF; iii, dimethyl sulfate and sodium perchlorate; iv, lithium diisopropylamide or potassium *tert*-butoxide.

exocyclic azolium ylide 1,3-dipole systems led us to generate the first 1,2,3-triazolium-1-methanide species⁴ by treating a *N*-trimethylsilylmethyl salt with caesium fluoride following a literature desilylation procedure.^{5.6} Despite their low basicity it has now proved possible to obtain similar quaternised salts **3** of the furazan system and to desilylate them in a process which should likewise produce **2**, the furazan-*N*-methanide analogue of the furoxan system.

Table 1 Products									
Compound (substrate)	Мр (<i>T</i> /°С)	Yield (%)	Compound	Мр (<i>T</i> /°С)	Yield (%)				
3a	160-162*	52	6a	116-118	90 ^{<i>d</i>}				
3b	182–184ª	51	6b	8284	83 ^d				
4 a	140–141 ^{<i>b</i>}	90	6a	116-118	80, ^e 91 ^f				
4b	174–175 ^b	88	6b	82-84	80,° 97 5				
4c	188–190 ^{<i>b</i>}	91	6c	108-110	83, ^e 86 ^f				

^{*a*} From dichloromethane–diethyl ether. ^{*b*} From acetone–diethyl ether. ^{*c*} From dichloromethane–hexane. ^{*d*} From the reaction of **3** with CsF. ^{*e*} From the reaction of **4** with lithium diisopropylamide. ^{*f*} From the reaction of **4** with potassium *tert*-butoxide.

The salts 3 were obtained by heating the parent furazans with trimethylsilylmethyl trifluoromethanesulfonate,⁴ and the N-methyl salts 4 were obtained by using dimethyl sulfate followed by anion exchange with an excess of sodium perchlorate. The salts 3 were labile and gave loss of Me₃Si group on TLC plates or chromatographic columns and also in NMR solvents in which they began to ring-expand to the 1,2,5oxadiazines 6. Treatment with CsF^{5.6} in dichloromethane at ambient temperatures gave high yields of the compounds 6 (Table 1). By analogy with our previous results on triazoles we propose that this desilylation produces the furazan methanide 2. However, extensive attempts to trap this with the reactive electron-deficient dipolarophile dimethyl acetylenedicarboxylate⁴ (which trapped the corresponding triazole-N-methanide) and the electron-rich dipolarophile 1-(pyrrolidin-1-yl)cyclohexene gave the products 6 even at temperatures down to -20 °C where the desilylation stopped. Hence, in contrast, to the furoxan structure 1, the proposed furazan methanide structure 2 rapidly ring-opens to 5 thereby providing a new route to the oxadiazines 6 by electrocyclisation. Similar ringopening occurs with the 1,2,3-triazolium-1-methanide system but, in this case, the ring N-N bond cleaves more slowly than the N-O bond of 2 allowing the methanide to be trapped.⁴ The compounds 6 were also obtained by treatment of the N-methyl salts 4 with lithium diisopropylamide or potassium tertbutoxide (Table 1). This latter type of ring expansion was also observed⁷ with the corresponding N-methyl-1,2,3-triazolium salts where it was found that the methanide intermediate analogous to 2, which could have been trapped, was not present and the reaction was an E2-type process similar to a Hofmann degradation. In the limit the desilylation process could also approach this concerted E_2 process or indeed the deprotonation could change to a two-step process giving 2 as the acidity of the

	2→ 5		5→6		2→ 6	
	Furazan	Triazole	Furazan	Triazole	Furazan	Triazole
$\Delta E_{\rm R}$	- 30.88	-26.10	-24.63	-25.62	- 55.51	- 51.72
$\Delta E_{\rm act}$	14.44	15.09	10.70	13.66	_	_
$\Delta G_{\mathbf{R}}^{b}$	-32.77	-27.92	-20.82	-21.85	-53.59	-49.77
ΔG_{act}^{b}	13.61	14.52	11.79	13.25	_	_

^a 1 cal = 4.18 J. ^b ($\Delta G = \Delta H - 298.15\Delta S$). ^c Replace NH for O in Scheme 1.

CH increases with the increasing electron-withdrawing character of the ring. However, it has been well established 4-6 that desilylations of N-trimethylsilyl salts with CsF produce 1,3-dipoles containing the $=N^+-CH_2^-$ entity. Theoretical calculations using the 6-31G basis set from the Gaussian 92 series of programs⁸ confirmed that the species 2 would rapidly ring-open. For these calculations the geometry optimisations were performed using analytical second derivatives and the proper number of eigen values verified. The results (Table 2) for the unsubstituted series $(\mathbf{R} = \mathbf{H})$ show a large gain in stability for the transformations $2 \longrightarrow 5$ and $5 \longrightarrow 6$ for both the furazan and triazole cases. The overall free-energy change for $2 \longrightarrow 6$ is -53.6 kcal mol⁻¹. The activation barriers for each of the steps are low being < 15 kcal mol⁻¹ but for the furazan case these activation barriers are 1-2 kcal mol⁻¹ lower than for the triazole case. Since the methanide dipole was short lived and trapped only with difficulty in the triazole case, the replacement of the ring N-N bond by the N-O bond appears to have slipped the dipole over the threshold where it can be trapped for synthesis. Earlier work⁹ before the recognition of electrocyclisations, shows that ring expansion to oxazines also occurs on deprotonation of N-methylisoxazolium salts and we have found that N-trimethylsilylmethyl salts of isoxazoles also desilylate with ring expansion suggesting a general process for heterocycles containing ring N-O bonds. The same process did not occur with N-methylpyrazolium salts, the nitrogen analogues of the isoxazole system.¹⁰

Experimental

The furazan substrates were prepared by literature¹⁻³ procedures. The products 3, 4 and 6 were obtained by the following typical methods.

(i) 3,4-Diphenyl-2-trimethylsilylmethyl-1,2,5-oxadiazol-2-ium trifluoromethanesulfonate 3a

A suspension of 3,4-diphenylfurazan (1.0 g, 4.5 mmol) in trimethylsilvlmethyl trifluoromethanesulfonate (1.8 cm³, 9.0 mmol) was stirred at ambient temperature for 24 h and then treated with diethyl ether (100 cm³) whereupon the title compound 3a separated (1.5 g, 52%), mp 160-162 °C (from dichloromethane-diethyl ether) (Found: C, 49.4; H, 4.4; N, 6.3. C₁₉H₂₁F₃N₂O₄SSi requires C, 49.8; H, 4.6; N, 6.1%); $\delta_{\rm H}(\rm CD_2Cl_2)$ 5.63 (s, 2 H, NCH₂) and 7.36–7.69 (m, 10 H, Ph). The only other material encountered was recovered furazan.

(ii) 2-Methyl-3,4-diphenyl-1,2,5-oxadiazol-2-ium perchlorate 4a

A solution of 3,4-diphenylfurazan (1.0 g, 4.5 mmol) in dimethyl sulfate (5 cm³) was stirred at 80 °C for 48 h, cooled, treated with aqueous sodium perchlorate (0.7 g, 10 cm³), stirred and then treated with diethyl ether (50 cm³) to give the title compound 4a (1.36 g, 90%), mp 140-141 °C (from acetone-diethyl ether) (Found: C, 53.3; H, 3.9; N, 8.2. C₁₅H₁₃ClN₂O₅ requires C, 53.5; H, 3.9; N, 8.3%); $\delta_{\rm H}([^{2}{\rm H}_{6}]$ acetone) 4.9 (s, 3 H, NMe) and 7.76-8.03 (m, 10 H, Ph); $\delta_{\rm C}$ 41.7 (NMe), 152.0 (C-4), 160.0 (C-3), 120.2, 130.3, 130.9 and 133.7 (C-3, phenyl, C-1', C-2', C-3', C-4', respectively) and 123.0, 130.5, 131.5 and 135.3 (C-4, phenyl, C-1', C-2', C-3', C-4', respectively).

(iii) 3,4-Diphenyl-6H-1,2,5-oxadiazine 6a

(a) A solution of 3a (470 mg, 1.02 mmol) in dichloromethane (10 cm³) was treated with caesium fluoride (300 mg, 2 mmol), stirred at ambient temperature for 24 h, filtered to remove salts, and then evaporated under reduced pressure. The residue (crude 6a) in dichloromethane (5 cm³) was placed on a column of silica gel 60 (Merck 230-400 mesh ASTM) and pure 6a (230 mg, 90%) was eluted with dichloromethane-ethyl acetate (95:5, v/v), mp 116-118 °C (from dichloromethane-hexane) (Found: C, 76.15; H, 5.2; N, 11.6. C₁₅H₁₂N₂O requires C, 76.25; H, 5.1; N, 11.9%); $\delta_{\rm H}$ (CDCl₃) 5.28 (s, 2 H, NCH₂O) and 7.1–7.3 (m, 10 H, two Ph); δ_c 78.3 (CH₂), 157.4, 156.25 (C-3, C-4), 135.1, 128.3, 128.5 and 130.4 (C-3 Ph, C-1', C-2', C-3', C-4', respectively) and 132.1, 127.9, 128.3 and 130.1 (C-4 Ph, C-1', C-2', C-3', C-4', respectively).

(b) A solution of 4a (1.0 g, 2.97 mmol) in toluene (30 cm³) was treated with potassium tert-butoxide (0.4 g, 3.56 mol) and the mixture stirred at ambient temperature for 20 h, filtered and evaporated to give a residue of crude compound 6a which was purified as described above (yield from column, 91%).

(c) A solution of lithium diisopropylamide prepared from Li metal (23 mg, 3.26 mmol), diisopropylamine (360 mg, 3.6 mmol) dry tetrahydrofuran (2.16 g) and isoprene (120 mg) with sonication, was treated with a solution of 4a (1.0 g, 2.97 mmol) in tetrahydrofuran (10 cm³), stirred at ambient temperature for 5 min and then worked-up as described above to give compound **6a** (80%).

References

- 1 R. M. Paton, in Comprehensive Heterocyclic Chemistry, series eds. A. R. Katritzky and C. W. Rees, Pergamon, Oxford, 1984, vol. 6, ed.
- K. T. Potts, pp. 393–426. 2 A. Albini and S. Pietra, in *Heterocyclic N-Oxides*, CRC Press Inc., Boca Raton, Florida, 1991, pp. 58-60; 81-83, 187.
- 3 C. Grundmann and P. Grunanger, The Nitrile Oxides, Springer-Verlag, Berlin, 1971.
- 4 R. N. Butler, P. D. McDonald, P. McArdle and D. Cunningham, J. Chem. Soc., Perkin Trans. 1, 1994, 1653.
- 5 E. Vedejs, S. Larsen and F. G. West, J. Org. Chem., 1985, 50, 2170.
- 6 R. C. F. Jones, J. R. Nichols and M. T. Cox, Tetrahedron Lett., 1990, 31, 2333
- 7 R. N. Butler, J. P. Duffy, D. Cunningham, P. McArdle and
- B. G. Johnson, H. B. Schlegel, M. A. Robb, E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Binkley, Gonzalez, R. L. Martin, D. J. Fox, D. J. Defrees, J. Baker, J. J. P. Stewart and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1992.
- 9 E. P. Kohler and A. H. Blatt, J. Am. Chem. Soc., 1928, 50, 1217; E. P. Kohler and N. K. Richtmyer, J. Am. Chem. Soc., 1928, 50, 3092; E. P. Kohler and W. F. Bruce, J. Am. Chem. Soc., 1931, 53, 644; J. F. King and T. Durst, Can. J. Chem., 1962, 40, 882.
- 10 R. N. Butler, H. A. Gavin, D. Cunningham and P. McArdle, J. Chem. Res., 1994, (S), 12.

Paper 5/00111K Received 6th January 1995 Accepted 8th March 1995